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Analysis of two alternative linite volume formulations, in respect of accuracy on non- 
uniform meshes and number of spurious modes, leads to a preference for the more compact 
cell vertex scheme over the cell centre scheme. The resulting equations are solved iteratively 
by using a Lax-Wendroff procedure as a smoother for a multigrid algorithm: then application 
of boundary conditions in a natural way leads rapidly to all individual residuals being driven 
close to zero--except at shocks. At shocks the residuals should not be zero and a shock-Jitting 
procedure is introduced to avoid this inconsistency. Sharp, accurate solutions on a relatively 
coarse mesh are obtained for a channel flow problem in which the Zierep singularity is 
displayed, and for the NACA 0012 aerofoil. G 1989 Academic Press, 1~. 

1. INTRODUCTION 

Great advances in the simulation of transonic inviscid flows have been made in 
the last few years. For genuinely unsteady flows it is highly desirable to work with 
the characteristic variables in some form; for steady flows the conservation law 
form is a simpler alternative which is quite adequate for most of the flow domain. 
Jameson and his collaborators [S, 61 have pioneered the use of a finite volume 
formulation to approximate the steady Euler equations and have produced a series 
of codes which are efficient, capable of producing flows over a complete aircraft, 
and very popular in the aerospace community. The finite volume scheme usually 
adopted in these codes uses a structured, body-fitted mesh with the flow variables 
associated with the centres of the cells which are quadrilaterals in two dimensions. 
In parallel with this work, Ni [13] and Denton [2] have used finite-volume 
schemes in which the flow variables are associated with the cell vertices and have 
achieved similar successes. Both approaches use a pseudo time-stepping method 
to solve the algebraic equations, the former usually adopting a Runge-Kutta 
procedure and the latter a Lax-Wendroff process. 
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In the present paper we begin by comparing the two finite volume formulations 
in two dimensions. Within the context of a time-stepping iteration to steady state, 
the cell centre approach has immediate advantages. The residual vector over each 
cell is directly associated with the state vector at its centre, making the equality of 
numbers of equations and unknowns obvious and simplifying the task of setting up 
an iteration. However, once an appropriate procedure has been devised for driving 
the residuals to zero in the cell vertex scheme, the resultant approximation has 
several advantages. It retains second-order accuracy when opposite mesh sides 
differ by O(h), while the cell centre scheme allows only 0(/z’) differences if it is to 
maintain its accuracy. And it supports only one spurious solution mode as opposed 
to three in the cell centre case. The greater compactness of the scheme which is 
related to both these advantages, also affects the greater ease with which boundary 
conditions can be applied. 

Ni [13] used a Lax-Wendroff procedure for the iteration of the cell vertex 
scheme, but it is important that the improvement suggested by Hall [4] be used 
too; an analysis shows that without it the second-order damping can be nullified by 
first-order amplification of errors arising from the non-uniformity of the mesh. 
Rather than the two-step form of Lax-Wendroff favoured because of its conserva- 
tion properties for unsteady problems, a one-step form is used to ensure that when 
convergence is achieved all the individual cell residuals are set to zero. Proper treat- 
ment of the boundary conditions is also crucial to ensuring this property. Fourier 
analysis of the scalar case on a uniform rectangular mesh shows that a CFL condi- 
tion of the familiar form vt + vs d 1 is necessary and sufficient for no growth of 
error. The optimum choice of dt for maximum error damping is discussed; it bears 
out the practical observation that the local At should be chosen close to the local 
CFL limit. 

When used as a smoother for a multigrid scheme, the Lax-Wendroff method is 
very efficient at achieving convergence away from shocks; it merely needs a little 
extra damping in the neighbourhood of sonic lines and to check the sole spurious 
mode. The position at a shock, however, is very different. The crucial point is that 
the usual residual should not be zero for a cell crossed by a shock, except in certain 
special cases. Any iteration that tries to make it so has to have large damping terms 
added to spread the error over a number of neighbouring cells. Moreover, these will 
need to contain carefully chosen parameters because simple experiments in one- 
dimensional nozzle problems readily show that the shock position is a very sensitive 
function of the form of damping chosen [15]. 

One is led to the conclusion that some form of shock fitting is needed, as long 
advocated by Moretti and his colleagues [9]. We present a shock-litting procedure 
for a simple two-dimensional shock which is reasonably well aligned with one set 
of mesh lines. The approach is to capture the shock after a number of iterations and 
then adapt the mesh in its neighbourhood. The shock can then be treated as an 
internal boundary, using the Rankine-Hugoniot conditions as boundary condi- 
tions. A shock speed is obtained which is used to move the shock and its 
neighbouring mesh, as the iteration proceeds. Results are given for the channel flow 



170 MORTON AND PAISLEY 

problem used by Ni [13] and for the NACA 0012 aerofoil at Mach number 
M, =0.8 and angle of attack TV= 1.25” and at M, =0.85, tl= 1.0”. Even on a 
relatively coarse mesh, very accurate results are obtained. 

2. PROBLEM FORMULATION 

The full unsteady Euler equations describing inviscid flow in two dimensions 
express the conservation of mass, the two components of momentum, and the 
energy. We use the notation U, u, p, P, E, H for the two Cartesian components of 
velocity, the density, pressure, total energy, and total enthalpy, respectively: the 
energy and enthalpy are related by 

H=E,$ (2.1) 

and, in addition, we have an equation of state, which for an ideal gas leads to 

where y is the ratio of specific heats. 
In many applications, only the steady state solution with a constant state at 

infinity is of interest. Then a reduced system can be derived by combining the 
steady energy equation (puH), + (puH), =0 with the steady mass conservation 
equation to give 

uH, + vH, = 0, (2.3) 

implying that enthalpy is constant along streamlines. Since in the applications 
considered here all the streamlines originate in the constant free-stream, H must be 
the same constant H,,,,, on each: substituting into (2.1) and (2.2) gives 

P=;(Y- 1) Hco,,, -; (u2+u*)). 

This algebraic relation together with the system 

PI + (PUL + (P), = 0 (2.5a) 

(PU), + (P + P2)x + (Pd, = 0 (2Sb) 

(WI, + (PUUL + (P + PU2), = 0 (2.5~) 

forms the standard pseudo-unsteady system for the Euler equations, termed the 
H-system by Viviand [27]. 
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The system (2.5) is totally hyperbolic, and the characteristic speeds for unidirec- 
tional flow are 

A=q and (2.6) 

where q is the flow speed and a = (yP/p)"* is the speed of sound. 
It is useful for computational purposes to non-dimensionalise the equations, and 

we follow the usual practice by taking the units of length, speed, and pressure to 
be a typical length L', stagnation sound speed a& and stagnation pressure Ph. This 
leaves all Eqs. (2.5) in the same form as before, so they can be viewed as equations 
in the new non-dimensional variables: 

However, the pressure relation (2.4) becomes 

P=; 
( 

l-;(y-l)(U2+V*) . 
) 

(2.7) 

The problems that we shall consider are of two types, flow through an infinite 
channel and flow past a fixed body in space. On the channel wall and on the body 
we impose the single boundary condition of flow tangency. Then for both types of 
problems the flow region is truncated and inflow and outflow boundary conditions 
are imposed; we shall limit ourselves here to subsonic inflow and outflow 
conditions. At inflow there are two ingoing characteristics requiring two boundary 
conditions which we choose to impose by specifying the tangential velocity and the 
entropy. At outflow only one boundary condition is needed and we specify the 
outflow pressure. For details see Section 6. 

3. FINITE VOLUME SCHEMES 

In the finite volume formulation, the goal of steady state is identified with the 
net flux into a finite volume cell being equal to zero. In smooth flow regions it is 
equivalent to the integration of the differential equations in conservation form over 
an arbitrary cell Sz with boundary &2 to give 

J.l Mu), + g(u),1 dx 4 = 0. (3-l) R 
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Here f and g are the flux vectors in the x- and y-directions, respectively: for the 
H-system they and u have three components defined by writing (2.5) as 
u,+f,+g,=O. Applying the divergence theorem we obtain the boundary integral 

I [f(u) dy - g(u) dx] = 0. (3.2) x2 

For the discrete version, where we now work with U, the approximation to u, the 
boundary integral (3.2) is replaced by the sum over the four cell sides (of a 
quadrilateral), 

where (dxi, dy,) defines the orientation of side i, and f(U)/,, g(U)I, are flux 
functions considered as averages along it. Hence f(U)l, dyi-g(U)li dxi is the 
normal flux through that side. 

The key discretisation decision is how these averages are to be expressed in terms 
of U. The two most obvious choices are to keep U at the centres of cells, as in 
Jameson [S], and average across the cell sides, or to keep U at the cell vertices, 
following Ni [ 131, and average along the cell sides. We consider these two below 
and decide firmly in favour of the latter. 

3.1. Cell Centres or Cell Vertices 

First, consider keeping U at the cell centres. With reference to Fig. la, we 
construct the discrete steady spatial residual (3.3) for an arbitrary cell by averaging 

a 

w 
. 

b 

FIG. 1. Geometry for flow variables at cell centres: (a) general quadrilateral mesh; (b) non-uniform 
rectangular mesh. 
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U across cell boundaries. Dividing by the cell area V,, denoting the residual by 
R,(U), and writing f, for f(U),, etc., we have 

For a uniform rectangular mesh of cell dimensions Ax, Ay, this reduces to 

Rj/c(U)= ( 
f,-f, a/-gs ~+x (3.5) 

the familiar central differencing in both x- and y-directions. 
Alternatively we can keep U at the cell vertices, as in Fig. 2a. Again constructing 

the residual (3.3) and denoting it by R,, we average U along the cell boundaries 
to give 

(f +f2)(Y*-Yl)-~(gl+gZ)(X2XI) 1 

=g- C(fl-f,)(Y,-Y,)+(f*-f,)(Y,-Y1) 
C 

- (8, -f&N% - x‘i) - (gr - &)(X3 - x1)1. (3.6) 



174 MORTON AND PAISLEY 

b 

FIG. 2. Geometry for flow variables at cell vertices: (a) the vertices around cell C; (b) the cells used 

to update vertex 1. 

This corresponds to using the trapezoidal rule to approximate the integrals along 
each of the cell sides. On a uniform rectangular mesh this can be rewritten as the 
box-scheme average of differences 

R.i+ 1/2,k+ 1,2(u) = 

(3.7) 

The objective, in computing an aproximate steady solution by means of some 
iterative process, is to make these spatial residuals (3.4) or (3.6) close to zero. In 
what follows we look at the principal differences in the character of the approxima- 
tion obtained by setting (3.4) and (3.6) to zero-in particular, the accuracy on 
non-uniform meshes and the tendency to exhibit spurious solution modes. 

3.2. Accuracy on Non-uniform Meshes 

On a uniform rectangular mesh the truncation error of either scheme, obtained 
by substituting the true solution into (3.5) or (3.7) and expanding in Taylor series, 
is second order in the mesh spacing. Moreover, the operators that need to be inver- 
ted in order to relate the truncation error to the error in the solution have a similar 
form: for (3.5) has the form AD,,U+ BD,,U, where A and B are the Jacobian 
matrices of f and g at some point and D,, D,, the central divided difference 
operators. While grouping the flux terms in (3.7) at each mesh point shows that it 
involves two diagonal central differences to the fluxes corresponding to the rotated 
co-ordinates, namely (Ayf It Axg)/(Ax2 + AY~)~‘~. Thus we are encouraged to base a 
comparison of the errors in the two schemes on a comparison of their truncation 
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errors; we shall continue to use this in the case of non-uniform meshes. A similar 
approach has been used by Roe [21] and Turkel [24]. 

For the cell vertex scheme, we know that the trapezoidal rule gives 

where Fzb is the value of the second derivative of F in the direction of and some- 
where along the line ab. Hence, after substituting u for U in (3.6) and using (3.2), 
we have for pairs of opposite sides 

+ three similar pairs of terms 
1 

=~{((Y’-‘.‘)l-(‘,-s”)‘)~’ 
c 

+ (y4- y3)3(f;4-f;J+ ..’ 
I 

. 

If the functions f, g have continuous second derivatives, then the approximation 
retains second-order accuracy provided the directions of opposite sides differ by 
O(h) and 

(Y2 - YJ3 - bJ3 - Y413 = ah41 

or 

0’2 - YIMY3 - Y4) = 1 + O(h)3 (3.9) 

where h characterises the mesh spacing, that is, opposite side lengths should be in 
a ratio of 1 + O(h). In general, this means that the cells must be parallelograms to 
within O(h). Even when the cells are distorted such that these ratios deteriorate to 
1 + O(l), the accuracy will still be first order. 

The cell centre method is more difficult to analyse in two dimensions, so for 
simplicity we assume the computational mesh to be rectangular, as in Fig. lb. The 
residual is given by (3.5) as 

R =f,-fw 
c 

sLv--& 

2Ax, 
I 

DAY, ’ 
(3.10) 
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where Ax,, dy, are the dimensions of cell C. Expanding about the cell centre, the 
leading terms in the truncation error are therefore 

R,(u) = 
Ax,+ 2Ax,-+ Ax, 

f,l c + 
AY, + DAY, + AYS 

4Ax, ~AYC 
g,.lc+ ...9 

where Ax, is the width of the cell to the right, and so on; since f, + g,,=O, this 
implies that we need, for first-order accuracy, 

Ax, + 2Ax, + Ax, Ay, + 2Ay, + Ay, 
4Ax, - 4Ayc 

= O(h). (3.11) 

In general, this means that each expression should be 1 + O(h) so that we require 
successive mesh lengths to be in a ratio of 1 + O(h) even for first-order accuracy; 
for second-order accuracy they would need to be in a ratio of 1 + O(h2), in general. 

Some indication of the effect of a non-rectangular mesh is given from the analysis 
by Paisley [ 141 of the case of a uniform rectangular cell with one corner displaced 
by amounts E, 6 in the x, y directions, respectively. It was shown that for first- and 
second-order accuracy E, 6 had to be O(h2), O(h3), respectively, in agreement with 
the above. 

Thus, the accuracy of the cell vertex scheme clearly shows a greater resilience to 
distortions in the mesh than does the corresponding cell centre scheme. Of course, 
as is widely appreciated, the basic flaw with the cell-centred scheme as in (3.4) on 
an uneven mesh is the evaluation of the flux on a cell boundary as a simple average 
of the values in neighbouring cells. On a non-uniform mesh this average is not cen- 
tred at that boundary and immediately errors are introduced. In principle it would 
be possible to restore second-order accuracy by centering the averages properly via 
an appropriate weighting based on cell dimensions. However, as Turkel [24] and 
Rizzi [20] acknowledge and as discussed in Paisley [14], the Runge-Kutta itera- 
tion is now more prone to instability and convergence is more difficult to achieve. 

From this discussion it is clear that the cell centre method as it stands must be 
adapted if it is to match the accuracy of cell vertex method on a mesh of a given 
non-uniformity. Whether the extra labour involved would be justified depends on 
other features of both implementations, and it is to these that we now turn. 

3.3. Spurious Solution Modes 

It is well known that if we use a difference operator involving more than the 
minimum number of points necessary to approximate derivatives, then the solution 
to the resulting difference equations is not unique. That is, spurious solution modes 
are present which, if not recognised and dealt with, can seriously pollute and 
corrupt the solution. 

Since the central differences in the cell centre residual (3.5) are three-point 
approximations to first-order derivatives, even the one-dimensional scheme will be 
prone to spurious oscillations in the converged solution. By contrast, the compact 
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cell vertex residual (3.7) contains only a two-point difference and in one dimension 
the steady solution can have no spurious oscillations present. 

In two dimensions, however, both the cell vertex and cell centre residuals admit 
oscillatory solutions. Consider the scalar linear equation 

24, + u,y + u, = 0 (3.12) 

in the quarter-plane, with appropriate boundary conditions. Discretising on a 
uniform rectangular mesh, the cell centre residual for the steady part of (3.12) is 

Rjk = uj+lk- uj-lk ujk+l- ujk-l 

2Ax 
+ 

2AY 

and the vertex residual is 

1 uj+Ik+l- ujk+l U]+Ik- ujk 
Rj+lJ2.k+1/2=2 

( Ax 
+ 

Uj+Ik+l-Uj+lk 

AY 
f 

(3.13) 

(3.14) 

If the discrete version of (3.12) is iterated until the steady state, then setting these 
residuals to zero defines the converged solutions. Looking for modes of the form 
Ujk = c7pivk, we have for the cell centre and cell vertex schemes, respectively, 

( &p~-l)v+&p(v2-1) ojd-‘vk-‘=O > (3.15a) 

( &(p-l)(v+l)+&(“+L)(y-1)) Wvk=o (3.15b) 

and it is seen that if /.L = v (the modes are travelling diagonally) these expressions 
are identical, apart from the extra factor p or v in the former. In particular, both 
residual equations are satisfied by oscillatory solutions of the form p = v = -1. 
There is still a difference, however; for (3.15a) is quadratic in p for a fixed v, while 
(3.15b) is only linear. Thus for the true mode v = 1 + O(h), (3.15a) gives not only 
the true mode p = 1 + O(h), but also the spurious mode p = - 1 + O(h): then it 
gives two spurious modes for v = -1. Thus, in total, the cell-centered scheme gives 
three distinct spurious modes corresponding to 

+ - + + + + + - + 
+ - + - - - - + - 
+ - + + + + + - + (3.16a) 

/L= -l,v=l p=l,v= -1 pL=v= -1. 

581/80/l-12 
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On the other hand, for the cell vertex residual there is only the one chequer-board 
mode 

+ - 
- + 

p=v= -1. 
(3.16b) 

Modes such as these can be triggered at shocks, boundaries, or even non- 
uniformities in the mesh and usually have to be damped out. The smaller number 
of modes in the cell vertex scheme is a distinct advantage. 

3.4. Solution of R,(U) = 0 

The spurious modes considered in the previous subsection are those remaining to 
pollute the approximation when all the residuals have been set sufficiently close to 
zero. To achieve this in the case of either (3.4) or (3.6) is a major task, to which 
the bulk of the computation is directed. Some form of iteration is called for; for the 
structured grids that we have in mind, a multigrid acceleration is highly desirable. 
The design and analysis of suitable multigrid processes has received considerable 
attention recently and we shall not go into any details here. What is required in 
each case is a suitable smoother, which could be used as an iterative method even 
without multigrid acceleration: its form may well affect the quality of the eventual 
approximation, which is our main concern in this paper, so we will consider this 
next. 

4. TIME-STEPPING ITERATION 

By far the most popular form of iteration or smoother, is that based on a time- 
stepping ap’proximation to the unsteady equation (2.5). It is here that the cell centre 
approach has its main attraction, since the residual (3.4) is correctly centred for 
updating, the value U,. Jameson [S] pioneered the use of Runge-Kutta methods 
for this purpose and the methods developed by him and his collaborators constitute 
the present “industry standard.” However, once it has been decided how neighbour- 
ing residuals can be combined to update the values of unknowns at a vertex, the 
cell vertex scheme again has definite advantages. These were first realised by Ni 
[13] and the techniques described below derive directly from his treatment. 

4.1. Lax- Wendroff Algorithms 

In Ni [13], the iteration chosen was one of the many versions of the Lax- 
Wendroff method; this can be thought of as a two-step method, though it is 
advantageous for steady problems to consider it as one step. It is based on a Taylor 
series expansion in time, 

6u .-untl n+l._ - un = Lltu, + ;dt*u,, + O(AP), (4.1) 
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in which the time derivatives are replaced by spatial derivatives via the differential 
equation. 

Thus from the unsteady system of differential equations, 

u, + f(u), f g(u), = 0, 

the second time derivative in (4.1) is replaced by spatial derivatives as 

(4.2) 

u,, = g (4) = -g (f(u), + g(u),) 

= -; (a.,)--$ (WI 

=~~~lr~u~.~+s~u~,l~+~~~~~~u~,+p~u~,.l)~ 

where A, B are the Jacobian matrices i3f/du, ag/au, respectively. This now gives the 
change in the solution as 

SU n+‘= -dt(f.,+g,)“++ll” ; (AK + g,)) +$ (Wx + p,))]n. (4.4) 

With reference to Fig. 2b, suppose we are calculating the change at point 1; then the 
first term in (4.4) is given by an average of residuals (3.6) in the neighbouring cells. 
The straightforward average 

-At $(R,+R,+R,+R,) (4.5) 

as recommended by Ni gives a divergent iteration on appreciably non-uniform 
meshes unless excessive damping is used, but Hall’s [4] area-weighted average 

-At 
V,RA+ V,RB+ VCR=+ V,R, 

v,+I/B+vc+I/D 
(4.6) 

changes the convergence properties, giving much better behaviour. 
On a general mesh the average in (4.6) corresponds to the boundary integral 

around the perimeter of the group of four cells, ensuring conservation is maintained 
during the transient phase. It seems, however, that this latter property is incidental 
to the improved performance of this averaging: what is important is that the values 
at the central vertex are eliminated. The effect is clear even in one dimension. 
Suppose the current approximation at three points has values U$ in the centre, VI 
on the right and U”_ on the left, with intervals h, and hP between the points, 
respectively. Then we can write the Lax-Wendroff update with simple averaging, 
and including the second-order terms, as 

u ;I”=&-iAt(R++R-)+(At)*(a+R+-a-R_)/(h++h-), (4.7a) 
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where 

R+ =tf: -f&W+, R-=tf,“-f”)lh-, ak=(f”+-fWtu”+-ut). 
(4.7b) 

Writing v+ =a* At/h., the coefficient of U; is given by 

(~:i’=[l+lv+(l-*)-;v++-==)]U;+ ..., (4.8) 

and the condition to ensure that this is less than unity is 

a+ a- ---< 2(a+ v, +a- vp) 
h, hp h, +h- (4.9) 

The bound on the right is positive and increases with At; but if the characteristic 
speeds are positive and the mesh decreases too fast from left to right or the charac- 
teristic speed increases too fast, the error at the central point might be magnified 
instead of damped. On the other hand, with the averaging of (4.6) we have 
h + R + + h _ R _ = f: -f ‘L and only the second-order damping term contributes to 
the coefficient of U;l, giving 

v: +h_v? 
h, +h- I 

u;;+ . . . . (4.10) 

Thus an isolated error at the central point is reduced so long as v2 < 1 everywhere. 
A more thorough analysis, based on a discrete energy method, confirms the 
convergence properties of this scheme. 

Returning to two dimensions, the second term of (4.4) is in the form of a 
divergence and again can be cast as a boundary integral, this time around the inner 
quadrilateral ABCD. The flux functions at the cell centres are now given by the 
product of the respective Jacobian matrix (where all the values of the conserved 
variables needed for the matrix entries are evaluated at the cell centres as averages 
of the vertex values) with the residual vector for that cell. This gives for the second 
term (cf. (3.6)), 

g C(W), - tAR),)b, - YD) + ((AR), - (AR),)ty,- yA) 

-((BR),-(BR),)(x,-x,)-((BR),-(BR),)tx,-x,)l, (4.11) 

where V, is the area of the quadrilateral formed by the centres of the four cells. The 
total change at a point is thus given by a weighted average of neighbouring 
residuals, with relative weights dependent on the geometry and the Jacobians. That 
is, (4.6) and (4.11) are combined to give 

6U n+ ’ = - 4 At[D, R, + D,R, + D,R, + DDR,], (4.12) 
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where D,, are the “distribution” matrices 

An important feature of this one-step formulation is that at convergence, when 
6u”+’ + 0, the weighted average of the cell residuals in (4.12) also tends to zero. 
This is crucial to showing that individual residuals tend to zero under appropriate 
boundary conditions-see below. 

The evaluation of the Jacobians necessary for the one-step form can be avoided 
by casting the iteration in a two-step form as is often done for unsteady problems, 
for example, see Richtmyer [ 181 or Richtmyer and Morton [ 191. Several ways of 
doing this for the present equations are presented in Johnson [7]. Of the many 
variants, the simplest is to predict values at cell centres (denoted here by *) and 
then obtain corrected values at the vertices. That is, 

U: = $(U; + U; + U; + U;) - f-AtR, 

U ;+‘=U:-AtR:, 

(4.13a) 

(4.13b) 

where Rr is evaluated from U;, Ug, U& and U;t. For convergence, however, we 
must now have R,* + 0 Vj and this does not necessarily imply that RG -+ 0 VQ. Thus 
if the two-step form is used the residual formed from average values in neighbour- 
ing cells is set to zero, rather than what is actually required-the residual for each 
individual cell. 

4.2. Choice of Time-Step 

For the limits on At to ensure convergence, and the optimum local choice, we 
consider first the two-dimensional scalar wave equation, with a and b constant, 

u, + au, + bu, = 0 (4.14a) 

on a uniform rectangular mesh : we have 

giy”+‘, -$AtC(l-v,+v,)R,+(l-v,-v,)R, 

+(1+v,-v,)~,+(1+v,+v,)R,] (4.14b) 
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with 

u,- u, u, - u&j 
-++ 

Ax Ax 
, etc. 

and v, = a(At/Ax) and v,. = b(At/Ay). Then performing the usual Fourier analysis, 
we assume the solution is of the form Uyk = I,” ei(it:+kq), where r = k, Ax and 
q = k, dy and k,x, k, are the wave numbers in the x and y directions, respectively. 
The damping factor is 

2 = 1 - i(v, sin 5 cos’ $j + vy cos2 & sin 9) 

- 2~: sin2 t< cos2 &q - v,vY sin r sin rj 

- 2v.t ~0s’ 15 sin2 4~. (4.15a) 

Rearranging, using the half-angle formulae and putting m = v,~ sin 4t cos iq + 
vy cos j[ sin iv] gives 

with 

II = 1 - 2im cos t< cos frj - 2m2, (4.15b) 

~~(2=1-4m2[1-m2-cos2~~cos2Jj~], (4.15c) 

and for convergence we need 1 iI2 < 1 for all <, q in the range 0 < r, q < 27r. ‘It is 
clearly necessary and sufficient for this that we have 0 < m2 < I- czc:, where we 
write c, for cos it, c, for cos fq and later s, for sin fc, sy for sin in. 

It can be deduced by use of the Cauchy-Schwarz inequality that for the upper 
bound on m2, which corresponds to the stability bound for the unsteady case, it is 
necessary and sufficient that 

v’, + v; < 1, (4.16) 

a condition observed numerically by Usab [25] and the same as that for the more 
standard rotated Richtmyer form of the Lax-Wendroff method. Sufficiency follows 
from the inequalities 

m2 < (v.: + v.~)(sZc.~ + sfc?) 

= (v’, + vt)(s; + s-f - 2s;.s3 

6 (v’, + vf,)(sf + St - s$s~, = (v’, + vf,( 1 - @); 

and necessity follows from choosing s, : sY = v, : v,, and letting s,, s, --+ 0. 
The stability or convergence limit (4.16) gives the largest At that can be used; for 

the differential equation, which has no dissipation so that the steady state is 
reached only by driving initial perturbations out of the domain, taking the largest 
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time-step possible is the optimal strategy. The Lax-Wendroff algorithm (4.14b), 
however, contains some dissipation which depends on At, and a smaller value may 
therefore be preferable. In one dimension, for example, )A) 2 = 1 - 4v2( 1 - u*) s4, so 
that one obtains maximum damping for all error modes by taking v* = i. Thus we 
consider next whether such a choice is sensible in two dimensions. 

It follows from Section 3.3 that the spurious mode given there, which corresponds 
here to the highest frequency in both directions t = q = n, gives A = 1 so that there 
is neither any damping nor any advection of it to the boundary. Furthermore, all 
modes with m = 0 by (4.15b) have the same property; that is, all those such that 

(a/Ax) tan $t + (b/Ay) tan $q = 0. (4.17a) 

At low frequencies this is approximated by ak, + bk,. = 0, corresponding to the 
wave vector being orthogonal to the direction of wave propagation. Indeed, we can 
classify all modes according to the value of 8, the angle between the vectors (v Y, vV) 
and (tan it, tan $4) in terms of which we can write 

m* = (v; + vt)( 1 - C~C: - s2,$) COS* 8. (4.17b) 

From (4.1%) we see that the damping of any mode for which m # 0 is increased as 
m2 is increased to i( 1 - czcc) and then decreases until the stability limit 
m2 = 1 - czc: is reached. Thus it is only modes for which the coefftcient of vz + vi 
in (4.17b) is greater than $( 1 - czc:) which can be better damped by decreasing 
the time-step. Even at low frequencies this occurs only for 8 <n/4 and at high 
frequencies this “cone of advantage” shrinks to zero. 

Hence, even for the simple problem (4.14a), there is little chance of improving the 
Lax-Wendroff damping by using a time-step below the stability limit. For practical 
applications with the Euler equations there is even less chance, for several reasons 
including the following: 

(i) For a system of equations there are several characteristic speeds: the 
time-step is limited by the fastest and, even in one dimension, reducing it may 
worsen the damping rate for modes corresponding to the slower speeds. For 
example, with speeds u +_ a and A4 = u/a, the damping is made equal and optimal 
for both sets of modes not with v,!,,,, = 4 but with 

V;,,=i+M 
2 1+M2’ 

Even with A4 = 0.5, this gives v,,, = 0.95. 
(ii) For the Euler system in two dimensions, waves travel in all directions so 

that the scope for exploiting small values of 8 in (4.17b) is further reduced. Also, 
because the Jacobian matrices A and B in (4.3) do not usually commute, wave 
modes cannot be simply separated and their damping optimised individually. 
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For the H-system the maximum wave speed given by (2.6) is q+a/y”* rather 
than q + a for the Euler equations; so using the maximum time-step for the latter 
corresponds to using a reduced time-step for the former. In practice this distinction 
is obscured by the fact that the time-step can be varied locally to take account of 
local mesh lengths and the maximum permissible value is unclear when the mesh 
is non-rectangular. Bearing in mind all these considerations, it is perhaps not 
surprising that in practice we have found the fastest reliable convergence rate is 
obtained by using the local time-step given by Ni [ 131; this is given by a geometry- 
independent formula using two one dimensional limits, 

At, < min VC V, 
luAy’-uAx’~+cAl’JuAy”-uAx”~+cAm 

(4.18) 

where Ax’, Ay’, Al, Axm, Ay”, Am depend on the cell geometry: 

Ax’= ;(x, +x3 -xl -x4) Ax” = ;(x, +x, -x3 -x4) 

AY’= f-(y, + ~3 - YI - ~4) AY” = t.(y2 + YI - ~3 - YJ 

Al= J((Ax’)* + (Ay’)* Am = J((Ax”)* + (Ay”)*). 

It is also important for the arguments in the next section that the distribution 
matrices of (4.12) be guaranteed non-singular, and this condition ensures this. 

4.3. Boundary Conditions and Decoupling of Spurious Modes 

More spurious modes than discussed in Sections 3.3 may be supported by the dis- 
crete system if the iteration process leads to only averages of groups of residuals 
being set to zero. For example, we ha.ve seen in the Fourier analysis above that all 
modes with m = 0 given by (4.17) would need damping over and above that given 
by the Lax-Wendroff process. With certain boundary conditions and geometries, 
however, we can ensure that all individual cell residuals converge to zero when the 
update procedure (4.12) converges. Consider the flow in a rectangular channel over 
an obstacle, for example, a circular arc. The decoupling happens as a result of the 
treatment of the sides, and particularly the corners, of the domain. For a scalar 
equation in two dimensions, 

the Lax-Wendroff iteration (4.12) becomes (for interior points) 

Su>+ ’ = - $ AtCQj+ II2,k 112 +Q,+I12,k+1/2+Qj~lf2,k+1/2+ Qj-l/2,,-1121 

j= 1, 2, . . . . J- 1, k = 1, 2, . . . . K- 1, (4.19) 

where the distribution factor D has been combined with R to give Q. 
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THEOREM. If the scalar Lax- Wendroff iteration (4.19) is used on a rectangular 
two-dimensional domain, then convergence implies Rj- ,,2,k _ ,,*(U) -+ 0 (j = 1, . . . . J; 
k = 1, . . . . K) provided there are two outflow boundaries, joined by a corner, where 
non-reflective formulae are used. 

Proof. Suppose the outflow corner is at J, K (top right-hand corner) and 
we have outflow along (1, K) . . . (J - 1, K) (the top of the domain) and 
(J, 1) . . (J, K - 1) (the right boundary). Then when convergence is achieved the 
right-hand sides of (4.19) tend to zero at all interior points. But for outflow 
boundary conditions, the iteration is applied at a boundary point with all residuals 
referring to the exterior of the domain set to zero. Thus we also have 

Qj+ l/Z,K- 112 +Qjpl/2,K-~/2’0 j= 1, . . . . J- 1, (4.20a) 

QJ- lJ2,k + 112 +QJ-I,z,~-I,z-‘O k = 1, . . . . K- 1, (4.20b) 

QJ- I/Z,K- I/Z -+ 0. (4.20~) 

Combining (4.20~) with (4.20a) for j= J- 1, shows that Q,-,,,,,- ,,2 + 0; putting 
k = K- 1 in (4.13b), similarly gives Q,- ,,2,K- 3,2 + 0. Finally, putting j = J- 1, 
k = K- 1 in (4.19) and using these results gives Q,- 3,2, K- 3,2 + 0. The result now 
follows by repeating this process inductively. 

Such decoupling for a system of equations is more difficult to establish. Further- 
more, setting all the cell residual vectors to zero does not necessarily define a 
unique solution so that the iteration procedure has to have other properties: for 
example, in the linear wave equation P, + div u = 0, u, + grad p = 0, the specification 
of the vorticity follows only from the unsteady form of the second equation. 
Nevertheless, by specifying only boundary variables associated with in-going 
characteristics and using non-reflective formulae for the remainder, we ensure as far 
as possible that the argument given for the scalar case still holds. This point will 
be taken up again for the applications in Section 6. Further details are given in 
Paisley [15]. 

Although the residuals will usually decouple in this way, the analysis of spurious 
modes in Section 3.3 shows that the resulting solution may still be corrupted by a 
chequer-board oscillation. However, when solving the two-dimensional channel 
problem, it is usual to specify as boundary conditions v = 0 at inflow and, for the 
top and bottom walls, a flow tangency condition, again v = 0. That is, for the top- 
left and bottom-left cells, v is specified at three of the vertices; at the fourth, only 
the mode of the true solution can exist, and v here must be the true value. For sub- 
critical flows this seems, in practice, to be enough to eliminate all spurious modes 
from all other cells and for all three flow variables of the system. However, in the 
case of the aerofoil calculation, the physical boundary conditions are less constrain- 
ing and this does not happen. Consequently, even for subcritical flow around 
aerofoils, a small amount of damping is necessary that is not needed for subcritical 
channel flow. For internal points, this is a nine-point formula given in Section 5.2; 
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for inflow and outflow boundaries, it is six-point; and along a solid boundary, it is 
a three-point formula. 

Supercritical flow introduces two more problems. First, and most easily dealt 
with, is the fact that the Lax-Wendroff algorithm is not entropy satisfying, and 
instabilities are likely to arise around the sonic line. These can be controlled by 
locally applying the same damping mentioned above. The solution is smooth in 
such regions and no real loss of accuracy is incurred. However, a much more 
serious challenge is presented by the presence of a shock wave, when the residuals 
(3.6) are not generally accurate representations of the flow in cells containing a 
shock. This will be examined in more detail below. 

5. SHOCK RECOVERY AND FITTING 

5.1. Error in Quadrature across a Shock 

Although the boundary integral relation (3.2) holds even when the cell is crossed 
by a stationary shock, approximation of the line integrals by the trapezoidal rule 
in this case can cause substantial errors. 

Consider Fig. 3 in which cell C contains a shock as shown. Suppose the shock is 
located such that 

b@ Ye) = (x,3 YR) = (x3, Y3) + Q,Cb*, Y2)- (x3, Y,)l 
(xi? YP) = (x.9 Ys) = (x4? Y4) + Q,[(XI, YI) - (x4, Y4)l. 

The standard sum over the four faces is obtained by applying the trapezoidal rule 
to each integral in j: + l: 
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using S:+S$+&+Si:+SS+Sk. Th e trapezoidal rule would give a good 
approximation to the latter, so that the error in the standard sum results from the 
difference 

(5.1) 

For simplicity we assume constant states on either side of the shock; then the 
difference becomes 

1(1-2~,)(y3-y*)Cfl-~(1-2~1)(x3-xz)Cgl 

+ 31 - 2MY, - Ym-1 - 4(1 - %Nx, - xl)csl, (5.2) 

where [f], [g] are the jumps in f, g. No error will be made when e1 = e2 = 4, i.e., 
when the shock cuts the faces exactly at their midpoints, and other special cases 
exist when the error made on face 23 is exactly balanced by that made along 
face 41. In general, however, the expression in (5.2) will be O(h) (giving a 
truncation error of 0( l/h) after division by the cell area) and over the length of the 
shock will contribute an 0( 1) error to the solution. 

In practice, the magnitude of the error is reduced by roughly aligning the mesh 
with the shock but it still remains the major source of inaccuracy; it is usually dis- 
guised by the addition of a non-linear dissipation which smears it over a number 
of neighbouring cells. However, for sensitive cases, for example, most aerofoils, this 
makes the position of the shock somewhat arbitrary. By adjusting the dissipation 
parameters the shock can be made to settle virtually anywhere on the aerofoil sur- 
face and careful tuning of the parameters together with a priori knowledge of the 
true position is required to give the shock in roughly the correct place. Such a cap- 
tured shock is still typically spread over 3 or 4 cells-about 10% of the aerofoil 
chord for a typical 128 x 16 mesh with 96 cells around the aerofoil. If the eventual 
aim is to predict shockwave/boundary-layer interactions for viscous calculations 
then this is a very thick region indeed; the shock ought to be then compared to the 
boundary-layer thickness, which is typically around 0.5 %. To predict narrow shock 
regions and correct locations (and hence lift and drag coefficients) with certainty 
therefore requires a very fine mesh (see Pulliam and Barton [ 171). 

5.2. Outline of Shock Fitting Procedure 

An alternative to this approach is to recognise the presence of the shock and to 
use a fitting technique. Of the various ways of achieving this, one is to allow the 
shock to “float” between the fixed mesh points and to modify the difference for- 
mulae close to the shock as discussed in Richtmyer and Morton [19], Salas [23], 
and Moretti [9, lo]. An alternative is to consider the shock as defining a line of 
adjustable mesh points treated as an internal boundary as in De Neef and Moretti 
[12], Zhu and Chen [28], and Veuillot and Cambier [26]. This last contribution 
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is the only one of these which uses an underlying conservative scheme-MacCor- 
mack’s method applied to the H-system (2.5), in a sub-domain approach using 
characteristic compatibility relations at the boundaries, including shocks. Albone’s 
[l] technique is a hybrid approach, using a separate shock-oriented mesh which 
floats through the fixed underlying mesh. 

The approach chosen here is based on the second alternative with double values 
of the flow quantities introduced along a shock line which forms part of a mesh 
line. In the first phase of the computation, a normal shock capturing technique is 
used, so-that dissipative terms have to be added to the basic iteration (4.12). These 
can be relatively unsophisticated and, combining them with those already referred 
to for damping the spurious modes, leads to an additional term of the form (see 
Hall [4]) 

(53a) 

where the cell values are averages over the vertices (see Fig. 2a); that is, 

0”,=~(u;+u;+u;+u~). (53b) 

and the coefftcient p has th form 

P=Pu,+PL,CI~A(P)l+ IRdP)l+ I&(p)l+ IMp)ll. (5.3c) 

Here R,(p), etc. are the first components of the residuals (3.6), corresponding to 
the density, and p,,, p, are numerical parameters dependent on the geometry and 
the time-step. The coefficient p,, gives the light damping used to control spurious 
modes, a typical value being p,, = 0.006. The coefficient p, gives the more severe 
damping needed in the shock capturing phase, a typical value being cc, = 0.02: note, 
however, that this term drops out if the residuals are truly zero. 

During this first phase the presence of a shock is detected by scanning along the 
set of mesh lines which are roughly aligned with the streamlines and looking for a 
jump in pressure. When reasonably consistent results are obtained, the shock 
parameters are recovered from the local values of the variables in a manner 
described in more detail below. Only a limited range of shock configurations are 
handled by the present version of the program-namely, a shock attached to the 
body boundary and crossing the body-fitted mesh lines. This is then fitted by a 
global cubic function and a patch of the mesh containing it is adjused so that the 
shock itself forms part of a complementary mesh line-see Fig. 4 for an example. 

In the new mesh, shocks are treated as internal boundaries and the Lax- 
Wendroff iteration is used to drive all the cell residuals to zero. The Rankine- 
Hugoniot relations are used to relate the double values introduced along the shock 
lines and these also determine the local shock speeds. Hence, an iteration can be set 
up to adjust the shock position, as described below. 
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L 

FIG. 4. A mesh patch adapted around a shock-orientated mesh-line, for channel flow over a circular 
arc. 

5.3. Shock Calculation 

Consider a typical shock configuration, as in Fig. 4, with the flow from left to 
right. In the supersonic flow ahead of the shock all three characteristics, of the 
equation system normal to the shock, point downstream and therefore take infor- 
mation into the shock. For the subsonic flow behind the shock, on the other hand, 
only two characteristics point downstream and that corresponding to the negative 
sign on the right of (2.6) points upstream and so carries information into the shock. 
Hence in the update process all flow quantities on the upstream side of the shock 
are updated in the normal way, but of course with all the integrals confined to one 
side of the shock, while on the downstream side only one quantity is updated in this 
way and two are imposed as boundary conditions. The ideal choices for these 
quantities would seem to be characteristic variables, but this is inconvenient when 
working with conserved variables. We have therefore chosen the density to be 
updated and the two momenta to be imposed by the Rankine-Hugoniot relations: 
no numerical difficulties have been encountered with this choice. 
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The way in which the shock calculation is carried out is as follows. If we suppose 
the shock has a normal velocity S, makes an angle c( to the x-axis, and U := 
u sin a - u cos TV, V := u cos CI + u sin ~1 are the flow velocities normal and tangential 
to the shock, the shock relations for the full Euler equations give 

v,= v, (5.4a) 

PR u,-s (Y+ l)@ -=-= 

pL u,-s (pl)M;+2 
(5.4b) 

where M, = (17, - S)/a, and ai = 1 - f(r - l)( c!J~ + Vi). For the H-system (2.5), 
rather more complicated relations hold; however, they are the same when the 
steady state is reached and (5.4) have proved adequate for the iteration process. All 
quantities on the left with subscript L are known after the update, as well as the 
density pR. Then (5.4b) determines M, from which we can then obtain 

s= U,-M,[l -f(y- l)(Ui+ v;)]“2; 

hence UR and V, can be obtained from (5.4b) and (5.4a). 

(5.4c) 

This calculation is carried out at all the double-valued points on the shock, 
including the foot of the shock on the body where, in addition, flow tangency on 
the upstream side is imposed. Imposition of the condition that the shock be normal 
to the body then ensures the same tangency condition holds on the downstream 
side because of (5.4a). The line of the shock can be updated by using the shock 
speed, which at convergence should be everywhere zero. This is done by first 
calculating new x-coordinates for where the shock crosses the body-fitted mesh 
lines, 

xb = xs + fi AtS sin c(, (5.5) 

where At is the smaller of the two time-steps used for the update of the flow 
variables at the shock point and /? is a parameter which allows for the shock adjust- 
ment not to be made at each time-step. Then the new shock line is calculated and 
the surrounding mesh patch adjusted, as described below. 

5.4. Shock Detection, Recovery, and Adjustment 

After the initial shock capturing phase, the presence of a shock is detected by 
scanning the set of mesh lines which tit the body and are roughly aligned with 
the streamlines. Along each, the maximum and minimum value of 6*Pi := 
pi+l- 2P,+ Pi-, is located: a shock is then deemed to be present if the flow is 
supersonic at the mesh point immediately upstream of where the maximum occurs. 
The recovery of the shock position and its parameters can be done in a variety of 
ways but only a relatively crude procedure has so far been found necessary. The 
position on each mesh line is first found by interpolation for 6*P= 0 between the 
maximum and minimum values. Then this is used to set up a local mesh patch onto 
which the flow variables are interpolated. 
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Because the shock is strongest at the body, its penetration into the field is ter- 
minated at the first mesh-line, counting from the body at which no shock is detec- 
ted. The set of x-coordinates calculated as above is fitted by least squares to a 
global cubic constrained to be normal to the body at its foot so that we then have 
a shock line lying obliquely to the fixed mesh. This is used to define a mesh patch 
dependent on an integer parameter m, as follows: suppose the mesh-line crossing 
those on which the shock is detected and whose foot on the body is closest to the 
foot of the shock has index I,: this is replaced by the shock line and is joined up 
smoothly with two points beyond its end, so defining the extent of the patch away 
from the body. Finally, the neighbouring mesh-lines I, +_ 1, . . . . I, f m are adjusted 
to give a relatively smooth spacing either side of the shock. A typical value for the 
parameter is m = 3 and a typical mesh patch is shown in Fig. 4. 

Values of all flow variables are interpolated from the captured flow field onto the 
new mesh before double values are introduced to start the shock fitting procedure. 
Both the double values and the values on mesh lines Z,f 1 are presently obtained 
by linear extrapolation from the values on lines I,+ 2 and Z,f 3 but more 
elaborate procedures could easily be introduced. 

The adjustment of the shock and the mesh patch, after the shock calculation 
described in Section 5.3, is carried out in a very similar manner. The extent of the 
shock may first be adjusted: if the upstream Mach number at the last shock point 
is recalculated to be less than 1.01, the shock is shrunk by one point since the orien- 
tation of the weak end is not well defined and slows convergence. But if the Mach 
number there is greater than 1.05 and that at the next point is greater than 1.01, 
the shock is extended by one point. The set of adjusted shock positions given by 
(5.5), as modified by the above process, can then be fitted by a cubic as already 
described. Finally, if by comparison with the original mesh the spacing in the patch 
has become too distorted, a grid line ahead of (or behind) the shock may need 
to be removed and inserted behind (or ahead of) it before the whole patch is 
recomputed and new values interpolated onto it. 

In this way the shock is free to shrink, extend, or shift laterally as it takes up its 
steady position, while keeping the local mesh distortion to reasonable limits. 

6. NUMERICAL EXAMPLES AND APPLICATIONS 

6.1. Lava1 Nozzle 

It is useful to start with the one-dimensional Lava1 nozzle problem. If the 
cross-sectional area is A(x) and this factor is included in the density p and pressure 
P, the equations for iso-energetic flow become 

Pr + (PUL = 0 (6.la) 

(6.lb) 
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FIG. 5. (a) Mach number and (b) entropy function for nozzle flow at M, = 0.7: ___ shock fitted, 
--- shock captured. 
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where 

P=F 
( 

1-;(y-l)U2 , 
1 

(6.1~) 

We approximate these in an obvious specialisation of the cell-vertex scheme. For a 
transonic convergingdiverging nozzle, both inflow and outflow are subsonic and 
one boundary condition needs to be imposed at each end. At inflow the density is 
calculated using a non-reflective (one-sided) Lax-Wendroff update and the pressure 
calculated from the isentropy condition P/p’ = (P/P’)~ which in our non-dimen- 
sionalisation becomes P = (p/~)~. Equating this with (6.1~) then yields the velocity 
u and hence the updated momentum. At outflow the momentum is updated from 
the non-reflective Lax-Wendroff process, the exit pressure is given from the 
free-stream Mach number as 

P=[l++l)MZ,]Y”i--y (6.2) 

and (6.1~) is used this time to give the density. 
In Paisley [15] results are given for a nozzle section given by y(x) = 

f[l.O-0.1(1+cosrc~)] for -l<x<l and for M,=OS and 0.7. On a graded 
mesh of 32 cells, in both these supercritical cases the shock-capturing algorithm 
without damping developed oscillations and diverged within a few hundred steps, 
after initially appearing to converge. With the addition of damping as in (5.3), and 
with an appropriate choice of damping parameters, a reasonable plot of the Mach 
number could be obtained, including approximately the correct position for the 
shock. On the other hand, the shock-litting algorithm detected a shock within 
about 100 iterations of the initial capturing phase and then converged with 
residuals less than 1O-4 in about 500 steps without multigrid. Plots of the Mach 
number and the entropy function (P/~‘)/(P/P’)~ - 1 are shown in Fig. 5. 
Compared with an analytic calculation which gave the shock position at xS = 0.5 
and an entropy rise of 0.04861 for exit pressure 0.7603, the computation gave 
xS = 0.50031 and downstream entropy which varied between 0.04854 and 0.04859, 
an accuracy of 0.1%. 

6.2. Channel Flow 

The problem of flow down a channel containing a 10% circular arc bump, as 
in Ni [13] and Hall [3], was used as the first test of the two-dimensional algo- 
rithm. Inflow and outflow boundary conditions were imposed as in [3]; that is, 
they were treated as in the nozzle problem above, except that at inflow the tangen- 
tial velocity u was set to zero and at outflow both components of momentum were 
updated from Eqs. (4.12). The condition that the flow be tangential to the walls is 
enforced along the sides of the channel and is achieved by calculating non-reflective 
updates and determining the resulting tangential velocity component. This is then 
resolved in the x, y directions to give corrected values for u and u. 

581/80/l-13 
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FIG. 6. (a) Mach number and (b) entropy function on the channel wall for channel flow at 
M, = 0.675: ____ shock fitted, --- shock captured. 
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Results are given in Fig. 6 for M, = 0.675 and for a 64 x 16 mesh in which the 
corners at the ends of the circular arc are fared over two cells to eliminate the jump 
in normal direction. In Fig. 6a the Mach number clearly resolves the Zierup 
singularity on the body, which is completely smeared in the shock-captured 
approximation shown for comparison. The plots of the entropy function in Fig. 6b 
give a more sensitive indication of accuracy; that for the fitted shock shows a much 
larger rise because the shock is some 20% stronger; that for the captured shock 
shows the familiar spike at the shock due to the addition of artificial viscosity (see 
Pike [ 163 or the earlier reference [8] for an explanation of this non-monotonicity); 
both plots show oscillations at the beginning and end of the circular arc despite the 
faring. 

6.3. NACA 0012 Aerofoil 

Greater care needs to be taken with boundary conditions for the aerofoil 
problem, since the circulation generated by the aerofoil needs to be taken into 
account in their imposition on a finite boundary. Generally the approach used by 
Hall [4] has been followed. A ‘Y-mesh, partly shown in Fig. 7, was used with a 
point on the trailing edge and a cut in the physical plane along the wake, across 
which continuity of all the flow quantities was imposed. 

FIG. 7. Part of the coarse mesh used for the NACA 0012 aerofoil at M, = 0.8, c( = 1.25”. 
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On the outer “C”-mesh line, which was treated like an inflow boundary, and on 
the right-hand outflow boundary the boundary conditions are dealt with as follows. 
An asymptotic solution given by assuming a compressible vortex centred on the 
aerofoil, as in Thomas and Salas [22], is given by the potential 

f$=q,Rcos(O-cc)- k tan-‘[(1-f14~)1’2tan(B-cc)], 
( > 

(6.3) 

where (R, 0) are polar co-ordinates, E is the angle of attack of the aerofoil, and the 
circulation, which with our normalisation is I-= $I4, C,, is obtained at each itera- 
tion from calculating the lift coefficient C, by integrating the pressure around the 
aerofoil. This gives a perturbation velocity to be added to the two components 
(qm cos ~1, qm sin tl) of the flow at intinity to give the velocity (u,, TV,) at each point 
on the outer mesh-line. Only the tangential component is calculated in this way: the 
normal-component is updated from the appropriate combination of the momentum 
components of (4.12), with the density also obtained from (4.12). However, this 
then defines the Mach number M through Bernoulli’s equation 

hf* = s’/c 1 - i(r - 1) 4*1, (6.4) 

and the isentropic relation in the form 

p=y[l +f(y-l)M*]P”(‘P” (6.5) 

is used to impose the value of the density. 
On the outflow boundary both components of the velocity are updated as above 

from the three components of (4.12); however, the two components of the velocity 
calculated as above from (6.3) define a Mach number M/from Bernoulli’s equation, 
and this is used to determine an exit pressure through the relation (6.2) with M, 
replacing M,. Finally the density is determined as usual from (2.7). 

The results are shown in Figs. 9-12 for the AGARD test cases M, = 0.8, 
c1= 1.25” and M, = 0.85, a = lo. The two shocks on the aerofoil for the latter case 
make it particularly severe, the lift coefficient being very sensitive to their relative 
positions. For both cases plots of Mach number and entropy function are shown 
for a coarse mesh and a fine mesh shown in Fig. 7 and Fig. 8, respectively. Note 
that for the M, = 0.8 case the shock is well aligned with the original mesh, and 
little distortion is seen. This is not so for the M, = 0.85 case, where the strong 
upper shock lies rather more obliquely. 

As for the channel results, these were produced using multigrid acceleration, with 
the convergence criterion being the average relative change in density 

(P n+1 -p”)/dt 

reaching lo-’ in the field, with a maximum value on the shock of 10. ‘. Details of 
the multigrid procedure as adapted for shock fitting will be given in a further paper. 
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FIG. 8. Part of the tine mesh used for the NACA 0012 aerofoil at M, = 0.85, a = 1”. 

The lift coefficients are summarised in the following table, comparison being 
made with the shock capturing results of Hall [4] and those of Pulliam and Barton 
[ 171 on a 560 x 65 mesh. 

CL 

Case Mesh Fitted Captured Cl71 

M, = 0.8 128x16 0.3745 0.3604 
a = 1.25 256 x 32 0.3710 0.3598 

0.3618 

M, = 0.85 128x16 0.4217 0.3823 
a= 1.0 256 x 32 0.4138 0.3946 

0.3938 

It is seen that the shock fitting method produces markedly higher lift than the 
corresponding shock capturing methods. For the relatively straightforward 
M, = 0.8 case this difference is around 2 i%, while for the other case it is rather 
more and, as expected, the fitted shocks are generally further downstream than the 
captured ones. 
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FIG. 9. As in Fig. 6 for the NACA 0012 aerofoil at M, = 0.8, a = 1.25” on the coarse mesh of Fig. 7: 
D = shock titted, D = shock captured. 
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FIG. 10. As in Fig. 9 on the tine mesh. 
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FIG. 11. As in Fig. 9 for the NACA 0012 aerofoil at M, = 0.85, a = 1 a on the coarse mesh. 
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FIG. 12. As in Fig. 11 on the fine mesh of Fig. 8. 

201 



202 MORTON AND PAISLEY 

It is well known, however, that shock capturing codes require tuning of the artifi- 
cial dissipation, on which shock positions seem critically dependent. Even on a very 
fine mesh there is no guarantee that the captured shocks are correctly located. 
Fitted shocks are free from that source of ambiguity, though the calculation does 
rely on capturing the stagnation point and slip line at the trailing edge. Further- 
more, a series of experiments to be reported elsewhere shows that the fitting 
procedure is insensitive to such features as the treatment given to the vanishing 
weak end and the effect of the Zierep singularity on the downstream foot of the 
shock. This is particularly true on a fine mesh. 

A feature deserving improvement in the fitting procedure is the use of a global 
cubic curve to represent the shock shape. Clearly it would be better if each point 
on the shock were allowed more freedom to move locally without affecting all 
others as would be afforded by the use of a stiffened spline. Work is in progress 
on this aspect, as well as on fitting procedures which do not rely on local mesh 
adjustment and so could deal with multiple shocks. 
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